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Abstract— The increasing number and types of energy resources 
and prosumers has complicated the operation in microgrid 
greatly. Such problem becomes a hard-to-solve or even 
impossible-to-solve for traditional mathematical algorithms 
without necessary approximation. However, modern heuristic 
optimization techniques have proven their efficiency and 
robustness in complex non-linear, non-convex and large-size 
problems. In this paper, we propose a comprehensive microgrid 
which consists of renewables, distributed generators, demand 
response, marketplace, energy storage system and prosumers, 
and investigate the behaviors of such system. A novel heuristic 
method, artificial bee colony, is proposed to solve the day-ahead 
optimal scheduling of the microgrid. Case studies have shown 
that such algorithm is able to solve the problem fast, reliable 
with satisfactory solutions. For the first case, the computational 
time is 9 minutes compared with 19 hours by a traditional 
methodical tool which has not taken necessary approximation of 
the original problem. 

Index Terms— Microgrid, Distributed generators (DG), Modern 
heuristic optimization, Artificial bee colony (ABC). 

I. INTRODUCTION 
The concept of microgrid has begun as early as in 2002 

defined by the Consortium for Electric Reliability 
Technology Solutions (CERTS) white paper. Microgrid is an 
aggregation of loads and distributed generators (DG) which 
can both operate in islanded and grid-connected mode in a 
distribution system level [1]. The majority of the microgrid 
control must be power electronics based to provide the 
flexibility for reliability and security in local networks [2]. 
Microgrid not only can exchange power with the main grid, 
but also provides ancillary services such as voltage stability 
support, power quality adjustments, etc. [3][4]. Microgrid can 
make use of additional energy resources and reduce the need 
for expanding transmission and distribution facilities, which 
is often very costly [5]. More importantly, a microgrid plays a 
critical role of improving system reliability by islanding from 
the main grid during an external outage. Therefore, microgrid 
has increasingly drawn attentions all over the world. 

Microgrid controllers play critical role in optimal 
scheduling. The goal of optimal scheduling is to optimize 
specific objective functions (operational cost, power loss, 

pollutant emission, etc.) by scheduling dispatch of DGs, 
responsive loads, and power exchanges between the 
microgrid and the main grid. The whole process needs to be 
subjected to various technical, reliable, and operating 
constraints.  

Considerable research have been focused on optimal 
scheduling in microgrid. An optimal scheduling of a 
renewable micrgrid in an isolated load area by mixed-integer 
linear programming in proposed in [6]. Such microgrid 
consists of a wind turbine, PV, fuel cell and an energy storage 
system (ESS). There are research focusing on grid-connected 
microgrid optimal dispatch [7][8]. Those work have adopted 
deterministic models by assuming the perfect forecast of 
renewables. The work from [9] developed stochastic model 
which has considered the uncertainty of renewable energy 
forecast by generating various stochastic scenarios. 

In the above literature, the scheduling models are mostly 
downsized version of the combination of unit commitment 
(UC) and security constrained economic dispatch (SCED) in 
the transmission level of power system because the goal of 
combined UC and SCED is to dispatch the available 
resources to meet the load demand while satisfying certain 
constraints [13]. Most of the aforementioned microgrid only 
contains limited distributed resources and hence is a simple 
structure. However, the microgrid scheduling problem is 
considerably different with UC and SCED problem due to the 
fact that (1) the structure of microgrid can be very complex 
including a large number of DGs, ESSs and responsive loads, 
(2) the unbalanced radial distribution network needs a
feasible algorithm to solve the AC load flow which is
different from that of transmission level network.

It is known that the optimal scheduling of a microgrid is 
a high dimensional mixed-integer nonlinear programming 
(MINLP) problem with discontinuous, non 

-convex, multi-modal search space. In general, without
simplifications (e.g., linearization of the model), it is very 
computationally costly for MINLP solver. It is also 
demonstrated that modern heuristic optimization techniques 
are able to tackle such problem without simplifying the 
system, and obtain promising results [10][11]. Therefore, in 
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this paper, we adopted a novel modern heurist technique, 
artificial bee colony (ABC), to mitigate the exponentially 
increasing execution time using traditional mathematical 
tools. By case studies, it is found that ABC is able to solve 
the complex MINLP fast, reliable and with satisfactory 
results. The use of modern heuristic optimization techniques 
may provide interesting answers and further discussion in the 
community. In all, the contributions of this paper are: 
1) A comprehensive complex microgrid structure is 

formulated, which includes a considerable number of 
renewables, dispatchable DGs and ESSs, and involves 
demand response such as electric vehicles (EV), 
residential loads, commercial and industrial loads and 
marketplace. The objective is to maximize profits. 

2) Artificial bee colony (ABC) is proposed to solve the day-
ahead microgrid optimal scheduling problem.  Statistical 
analysis/evaluation of solutions is conducted as well. 

 
The paper is organized as follows: Section II formulates 

the optimal scheduling problem in microgrid and Section III 
describes methodology and the implementation of the ABC. 
In Section IV the proposed algorithm is evaluated in two case 
studies. Finally, the conclusion is provided in Section V. 

 
II. PROBLEM FORMATION 

In this section the general description of the microgrid is 
presented first, followed by the formulation of optimal 
scheduling.  

 
A. Description of the Microgrid 

The microgrid structure in this paper is adopted from 
Research Group on Intelligent Engineering and Computing 
for Advanced Innovation and Development (GECAD), settled 
in Polytechnic of Porto [12]. The microgrid consists of three 
major components: energy resources (ER), energy 
management system (EMS), and prosumers as shown in 
Figure 1. The ER include renewables (wind, solar, etc.), 
dispatchable DGs (diesel generator, hydropower plant with a 
reservoir, etc.), demand response program (load demand can 
be shifted or reduced by selling electricity at a lower price), 
marketplace (external supplier), and ESS. The EMS is the 
most essential component, which plays the role of controlling 
and monitoring the microgrid. Prosumers include electrical 
vehicles (EV), residential, commercial and industrial 
demands. It is also worthy to mention that some components 
are capable of buying/selling electricity from/to micrigrid, 
such as marketplace, ESS and EVs. 

The EMS is able to buy energy from several resources 
and marketplace to make revenue by selling energy to 
customers. In addition, ESS can provide need for load and 
Vehicle to Grid (V2G) is also allowed to provide need for 
load. It is also assumed that operational costs and electricity 
price is fixed for each component. The main objective of the 
EMS is to perform optimal energy source scheduling of the 
involved resources for the following 24 hours in order to 
maximize profits.   

 
B. Optimal Scheduling of the Microgrid 

The optimal scheduling of the microgrid is a hard 
combinatorial mixed-integer non-linear programming 
(MINLP) problem due to a large number of continuous, 
discrete and binary variables and network non-linear 
equations. The objective is to maximize profits: income (IN) 
minus operational cost (OC) as defined as 

INOCZ −=  min                         (1) 

Since maximizing profit (IN – OC) is equivalent to 
minimizing (OC – IN), and thus the goal in (1) is to minimize 
the objective function Z.  

The EMS receives income from four sources: the 
electricity selling to consumers; the energy selling to the 
electricity market; the revenue from the ESS by charging 
electricity; and similarly, from the charging of EVs as 
following:   
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On the other hand, the OC considers the generation cost 
of DGs, external suppliers, discharge of ESS and EVs, 
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Figure 1. A microgrid Structure. 



 

demand response program, and penalty on non-supplied 
demand and penalty on DGs’ generation curtailment. 
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where E is an index of ESS, I an index of DG units, L an 
index of loads, M an index of markets, S an index of external 
suppliers, t an index of time periods and V an index of EVs; 
NE is the number of ESS, NL the number of loads, NM the 
number of markets, NV the number of EVs, NDG the number 
of DGs, NS the number of external electricity suppliers; 
CDG(I,t) is the generation cost ($) of unit I in t, CSupp(S,t) the 
energy price of external supplier S in t, CLoadDR(L,t) the load 
reduction cost of L in t, CDischa(E,t) the discharging cost of ESS 
E in t, CDischa(V,t) the discharging cost of V in t, CNSD(L,t) the 
non-supplied demand cost of load L in t, CGCP(I,t) the 
curtailment cost of DG unit I in t; MPLoad(L,t) is the price ($) of 
load L in period t, MPSell(M,t) the price ($) that market M pays 
in time period t, MPCharge(E,t) the price ($) for the charge 
process of ESS E in period t, and MPCharge(V,t) the price ($) for 
the charge process of EV V in period t; PCha(E,t) is the real 
power charge (MW) of ESS E in period t, PLoad(L,t) the real 
power demand (MW) of load L in period t, and PSell(M,t) the 
real power (MW) sale to market M in period t,  PDG(I,t) the 
real power (MW) generation of DG I in t, PSupp(S,t) the real 
power generation of external supplier S in t, PLoadDR(L,t) the 
real power reduction (MW) of L in t, PNSD(L,t) the real power 
of non-supplied demand (MW) and PGCP(I,t) the generation 
curtailment power (MW) for load L and DG unit I.  

The problem constraints are similar to [13], which is an 
optimal power flow problem. The equality constraints 
include the network equations, specifically, the real and 
reactive power balance equations. Inequality constraints 
include voltage and angle limits, DG generation and supplier 
limits in each period, ESS capacity, ESS charge and 
discharge rate limits, EVs capacity, EVs trips requirements, 
EVs charge and discharge efficiency and rate limits. Due to 
the page limit, the authors do not list those constraints 
explicitly. AC load flow is calculated by a robust algorithm 
called Backward/Forward Sweep method for distribution 
radial system.  

Inequality constraints are handled in two methods: 
imposing penalty functions, and direct repair of solutions. 
Penalty function is introduced as:  
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where p is the penalty function of dependent variable xi. 

Penalties will be added to objective functions if dependent 
variables do not satisfy constraints. The ‘direct of solutions’ 
mechanism means that the solutions returned by the function 
are changed if some constraints are not complied with. Such 
mechanism can not only handle the constraints, but also 
provide a fast convergence. For example, control variables 
such as charge/discharge rates of EVs/ESS are adjusted 
according to the state of charge and capacity constraints. 
Therefore, there is no need to impose penalties because the 
feasible solutions are guaranteed.  
 

III. METHODOLOGY 
In this section, a modern heuristic optimization technique, 

the ABC, was introduced to tackle the problem.  
In the original ABC algorithm by Karaboga [13], initial 

artificial bees are spread out randomly in a multidimensional 
search space. Each artificial bee has the ability to store current 
information and communicate with neighbours. Inspired by 
the foraging behaviours of natural honey bee swarms, the 
ABC has been addressed in various applications [14]  

Generally the process of ABC can be summarized as: first, 
food source positions (feasible solutions) are initialized within 
the search space randomly. After the initialization the 
solutions will be improved by the repeated cycles of search 
process conducted by artificial employed, onlooker and scout 
bee phases. For the sake of space, the authors only list two 
fundamental equations used in ABC, and details can be found 
in the original report [13].  

At initialization each vector solution Xi = {Xi,1,Xi,2,…,Xi,D} 
is generated randomly within the limits of the control variables 
as follows: 

)()1,0( min_,max_,min_,, jijijiji XXrandXX −×+=     (5)      

where Xi,j_min and Xi,j_max are the lower and upper bounds for 
dimension j; i is from 1 to SN, and j is a random number from 
1 to D, and SN is the number of employed bees and onlooker 
bees, D is the number of control variables (optimization 
parameters); and rand(0,1) is a uniformly distributed random 
number in (0,1).   

On employed bee phase, each bee searches for rich 
artificial food sources via updating current solutions based on 
their neighborhood’s information and assess the nectar of 
new solutions. The search equation that used to update a 
candidate solution vector Vi is defined as: 

)( ,,,,, jkjijijiji XXXV −×Φ+=               (6) 

where k is a different integer from i, uniformly chosen from 
the range [1, SN], i,j is a random number from [-1,1].  If the 
updated solution has better nectar than the old one, employed 



 

bee will memorize the new solution and discard the old one; 
otherwise they will keep the old solutions. This particular 
process is called ‘greedy selection’. The structure of ABC is 
summarized in Figure 2.  

 
 

As mentioned earlier, the normal Newton’s method for 
transmission network AC load flow does not fit for solving 
radial network load flow due to the fact that the system 
parameters, resistance and reactance ratio R/X, is much higher 
than that of transmission network. In addition, since the 
network is unbalanced, distribution network matrices are ill 
conditioned and thus Newton’s method are inefficient in 
solving such problem. A robust Backward/Forward Sweep 
method has been developed in [15] for solving load flow of 
practical three phase distribution system with a large number 
of nodes and branches. The method has tested for practical 
systems; therefore we adopted such method in this paper.  

 
IV. CASE STUDIES 

In this section, two case studies were conducted to 
investigate the efficiency of the algorithm and final results 
were also presented and discussed.  
A. 33-bus Scenarios 

In this scenario, a 12.66 kV 33-bus distribution network 

has been considered.  As shown in Table I, the system 
consists of DGs, external suppliers, wind energy, ESS, EVs, 
market and loads involved in demand response program.  

 
 

Table I. Scenario I Overview 
33-bus 12.66kV distribution network 

66 DGs 
10 External suppliers 
1 Large wind turbine 

15 ESS 
1800 EVs (V2G allowed) 

1 Market 
32 various loads involved in demand response 

 
As mentioned previously, the objective of implementing 

heuristic method to tackle complex optimal scheduling of 
distributed energy resources is to obtain satisfying results by 
significantly reducing computational time, because without 
transformation of the original problem, conventional solver 
such as mixed integer nonlinear programming (MINLP) will 
take hours, even days. Table II demonstrates computational 
time.  

 
 
 
 

Step 1) Initialization: 
1.1) Randomly generate SN points in the search 

space as feasible solutions Xi by (5). 
1.2) Run Load Flow and evaluate the objective 

function by (1). 
Step 2) From all employed bees (i = 1, …, SN): 

2.1) Generate a candidate solution Vi by (6).  
2.2) Run Load Flow and evaluate the objective 

function by (1). 
2.3) Choose a solution (from Xi and Vi) with better 

fitness function. 
Step 3) For all onlooker bees (only choose ‘good’ 
solutions to update. The selection happens under certain 
probability p): 

3.1) Generate a new candidate solution by Vi (6).  
3.2) Run Load Flow and evaluate the objective 

function by (1). 
3.3) Choose a solution (from Xi and Vi) with better 

fitness function. 
Step 4) Memorize the best solution so far. 
Step 5) For all scout bees (will be executed only after the 
maximum number of trails): 

5.1) Replace Xi with a new randomly produced 
solution Xi by (5). 

5.2)  Run Load Flow and evaluate the objective 
function by (1). 

Fig. 2. The overall structure of ABC. 
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Fig. 3. Schematic of the 33-bus distribution system. 



 

Table II. Execution Time 
MINLP ABC 

CPU: Intel (R) Xeon (R) 
@ 2.10GHZ with 16GB 

RAM 

CPU: Intel (R) i7 @ 
3.4GHZ with 8GB RAM 

19hours 9.01min 
280,729 Equations 

234,541 Single variables 
88,380 Discrete variables 

 
As shown from Table II, the execution time has been 

significantly reduced. Figures 4, 5 and 6 show the optimal 
dispatches of 10th EV, 10th DG, and market. Since there are 
too many control variables for both cases, and due to the page 
limit we only present these three as examples.  

 

 
 
 

 
B. 180-bus Scenario 

In this case, the test system is extended to 180 buses. 
Similarly, the optimal dispatches of one of EVs, DGs and the 
market is plotted as examples in Figures 7, 8 and 9. Table III 
gives the overview of such system. Table IV shows the 
execution time compared with MINLP.  
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Fig. 8. 10th DG’s optimal dispatch. 
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Fig. 7. 10th EV’s optimal dispatch. 
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Fig.6. Market’s optimal dispatch 
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Fig. 4. The 10th EV’s optimal dispatch. 

 
Fig. 5. 10th DG’s optimal dispatch. 



 

 
Table III. Scenario II Overview 

180-bus 30kV distribution network 
116 DGs 

1 External suppliers 
7 ESS 

6000 EVs (V2G allowed) 
1 Market 

90 various loads involved in demand response 
 

Table IV. Execution Time 
MINLP ABC 

CPU: Intel (R) Xeon (R) 
@ 2.10GHZ with 16GB 

RAM 

CPU: Intel (R) i7 @ 3.4GHZ 
with 8GB RAM 

168hours 18.12min 
910,033 Equations 

763,033 Single variables 
290,568 Discrete variables 

 
V. CONCLUSION 

In this paper, a microgrid which consists of DGs, ESS, 
EVs, market, responsive loads, etc. has been adopted for a 
comprehensive investigation. A novel heuristic algorithm, 
ABC, is implemented to tackle the optimal scheduling of 
distributed energy resources. Such problem is a non-linear 
and non-convex problem, for which it is hard or impossible to 
use common optimization tools without modification of the 
system. Thus ABC is proposed to search for the global 
optimum without simplifying approximation of the system. 
The ABC has demonstrated its ability to handle complex and 
large distribution system such as 180 bus system with 
thousands of equations and variables. By using ABC, 
successful solutions can be obtained and computational time 
has been reduced significantly compared with solving the 
problem by commercial solver without simplifying the 
problem. ABC is robust in the sense that by running multiple 
trials, they always converge to successful solutions. 
 

 
VI. REFERENCES 

 
[1] The CERTS White Paper on Microgrid Concept, April, 

2002.Available: 
file:///C:/Users/baiw/Downloads/certsmicrogridwhitepaper.pdf 

[2] W. Bai, M. R. Abedi, and K. Y. Lee, “Distribution generation 
system control strategies with PV and fuel cell in micorgrid 
operation,” Control Engineering Practice, vol. 53, pp. 184-193, 
2016. 

[3] S. Beer, T. Gomez, D. Dallinger, I. Momber, C. Marnay, M. 
Stadler, and J. Lai, “An economic analysis of used electric 
vehicle batteries integrated into commercial building 
microgrids,” IEEE Trans. Smart Grid. vol. 3, pp. 517-525, 
2012. 

[4] A. Tsikalakis and N. D. Hatziargyriou, “Centralized control for 
optimizing microgrids operation,” IEEE Trans. Energy 
Convers. vol. 23, pp.241-248, 2008. 

[5] S. Parhizi, H. Lotfi, A. Khodaei, and S. Bahramirad, “State of 
the art in research on microgrids: A review,” IEEE Access, vol. 
3, pp. 890-925, 2015. 

[6] H. Morais, P. Kadar, P. Faria, Z. A. Vale, and H. M. Khodr, 
“Optimal scheduling of a renewable micro-grid in an isolated 
load area using mixed-integer linear programming,” Renewable 
Energy. vol. 35, pp. 151-156, 2010. 

[7] A. Sobu, and G. Wu, “Dynamic optimal schedule management 
method for microgrid system considering forecast errors of 
renewable power generations,” IEEE Int Conf. Power System 
Tech. pp.1-6, 2012. 

[8] F. A. Mohamed and H. N. Koivo, “System modelling and 
online optimal management of MicroGrid using mesh adaptive 
direct search,” Int. J. Electr. Power Energy Syst. vol. 5, pp. 
398-407, 2010. 

[9] W. Su, J. Wang, and J. Roh, “Stochastic energy scheduling in 
microgrids with intermittent renewable energy resources,” 
IEEE Trans. Smart Grid. vol. 5, pp. 1876-1883, 2014. 

[10] K. Y. Lee, and M.A. El-Sharkawi (Editors). Modern heuristic 
optimization techniques with application to power systems. 
IEEE Press. Wiley, New York, 2008. 

[11] W. Bai, I. Eke, and K. Y. Lee, “An improved artificial bee 
colony optimization algorithm based on orthogonal learning for 
optimal power flow problem,” Control Engineering Practice. 
vol. 61, pp. 163-172. 

[12] Z. Vale, and J. Soares, 2017 Competition Evaluating the 
Performance of Modern Heuristic Optimizers on Smart Grid 
Operation Problems, PES Analytic Methods in Power Systems 
Committee, Dec. 2016. 

[13] D. Karaboga, “An Idea based on honey bee swarm for 
numerical optimization,” Erciyes Univ., Kayseri, Turkey, Tech. 
Rep.-TR06, 2005. 

[14] W. Bai, I. Eke and K. Y. Lee, “Improved artificial bee colony 
based on orthogonal learning for optimal power flow,” 18th 
International Conference on Intelligent System Application to 
Power System (ISAP). pp. 1-6, 2015.   

[15] D. Thukaram, H. M. Wijekoon Banda, and J. Jerome, “A robust 
three phase power flow algorithm for radial distribution 
systems,” Elect. Power Syst. Research, vol. 50, pp. 227-236, 
1999. 

po
w

er
 in

 p
.u

 
Fig. 9. Market’s optimal dispatch. 




